AskDefine | Define curl

Dictionary Definition

curl

Noun

1 a round shape formed by a series of concentric circles [syn: coil, whorl, roll, curlicue, ringlet, gyre, scroll]
2 American chemist who with Richard Smalley and Harold Kroto discovered fullerenes and opened a new branch of chemistry (born in 1933) [syn: Robert Curl, Robert F. Curl, Robert Floyd Curl Jr.]
3 a strand or cluster of hair [syn: lock, ringlet, whorl]

Verb

1 form a curl, curve, or kink; "the cigar smoke curled up at the ceiling" [syn: curve, kink]
2 shape one's body into a curl; "She curled farther down under the covers"; "She fell and drew in" [syn: curl up, draw in]
3 wind around something in coils or loops [syn: coil, loop] [ant: uncoil]
4 twist or roll into coils or ringlets; "curl my hair, please" [syn: wave]
5 play the Scottish game of curling

User Contributed Dictionary

English

Etymology

Metathesis of crulle.

Pronunciation

Noun

  1. a piece or lock of curling hair; a ringlet
  2. a spin making the trajectory of an object curve
  3. : Any exercise performed by bending the arms or legs on the exertion, especially those that train the biceps.
  4. Movement of a moving rock away from a straight line
  5. Vector operator corresponding to the cross product of del and a given vectorial field.

Translations

piece or lock of curling hair; a ringlet

Verb

  1. to cause to curve
  2. to make into a curl
  3. A vector field denoting the rotation per unit area of a given vector field.
  4. To take part in curling
    I curl at my local club every weekend.

Related terms

Extensive Definition

In vector calculus, curl (or: rotor) is a vector operator that shows a vector field's "rate of rotation"; that is, the direction of the axis of rotation and the magnitude of the rotation. It can also be described as the circulation density.
"Rotation" and "circulation" are used here for properties of a vector function of position, regardless of their possible change in time.
A vector field which has zero curl everywhere is called irrotational.
The alternative terminology rotor and alternative notation (used in many European countries) is \operatorname(\mathbf) are often used for curl and \operatorname(\mathbf).

Coordinate-invariant Definition as a Circulation Density

The component of \operatorname(\mathbf) in the direction of unit vector \mathbf is the limit of a line integral per unit area of \mathbf, namely the following integral over the closed curve \partial S^. This closed curve is in a plane normal to \mathbf:
\mathbf_\cdot\operatorname(\mathbf) = \lim_ \frac \oint_ \mathbf \cdot d\mathbf
Now to calculate components of \operatorname(\mathbf) for example in Cartesian coordinates, replace \mathbf with unit vectors i, j and k.
This defines not only the curl in a way free of any coordinates, but makes also visible that it is a circulation density.
Stokes's theorem (see below) can directly be derived from it and the representation in special coordinates can be explicitly obtained.

Usage

In mathematics the curl is defined as:
\operatorname(\mathbf) = \vec \times \vec
where F is the vector field to which the curl is being applied. Although the version on the right is strictly an abuse of notation, it is still useful as a mnemonic if we take \nabla as a vector differential operator del or nabla. Such notation involving operators is common in physics and algebra.
Expanded in Cartesian coordinates, \vec \times \vec is, for F composed of [Fx, Fy, Fz]:
\begin
- \\ \\ - \\ \\ - \end
Although expressed in terms of coordinates, the result is invariant under proper rotations of the coordinate axes but the result inverts under reflection.
A simple representation of the expanded form of the curl is:
\begin
\\ \\ \\ \\ \end \times F
that is, del cross F, or as the determinant of the following matrix:
\begin \mathbf & \mathbf & \mathbf \\ \\
& & \\ \\ F_x & F_y & F_z \end
where i, j, and k are the unit vectors for the x-, y-, and z-axes, respectively.
In Einstein notation, with the Levi-Civita symbol it is written as:
(\vec \times \vec )_k = \epsilon_ \partial_\ell F_m
or as:
(\vec \times \vec ) = \boldsymbol_k\epsilon_ \partial_\ell F_m
for unit vectors:\boldsymbol_k, k=1,2,3 corresponding to \boldsymbol, \boldsymbol, and \boldsymbol respectively.
Using the exterior derivative, it is written simply as:
dF\,
Taking the exterior derivative of a vector field does not result in another vector field, but a 2-form or bivector field, properly written as P\,(dx \wedge dy) + Q\,(dy \wedge dz) + R\,(dz \wedge dx) .
Since bivectors are generally considered less intuitive than ordinary vectors, the R³-dual :*dF\, is commonly used instead (where *\, denotes the Hodge star operator). This is a chiral operation, producing a pseudovector that takes on opposite values in left-handed and right-handed coordinate systems.

Interpreting the curl

The curl of vector field tells us about the rotation the field has at any point. The magnitude of the curl tells us how much rotation there is. The direction tells us, by the right-hand rule (four fingers of the right hand are curled in the direction of the motion and the thumb points in the direction of the rotation) about which axis the field is rotating.
A commonly used device for thinking about curl is the paddle wheel. If we were to place a very small paddle wheel at a point in the vector field in question and treat the drawn vectors and their lengths as currents in a river with magnitude and direction, whichever way the paddle wheel would tend to turn is the direction of the curl at that point. For example, if two currents are trying to rotate the wheel in opposite directions, the stronger one (the longer vector) will win.

Examples

A simple vector field

Take the vector field constructed using unit vectors
\vec(x,y)=y\boldsymbol-x\boldsymbol.
Its plot looks like this:
Simply by visual inspection, we can see that the field is rotating. If we stick a paddle wheel anywhere, we see immediately its tendency to rotate clockwise. Using the right-hand rule, we expect the curl to be into the page. If we are to keep a right-handed coordinate system, into the page will be in the negative z direction.
If we do the math and find the curl:
\vec \times \vec =0\boldsymbol+0\boldsymbol+ [(-x) - y]\boldsymbol=-2\boldsymbol
Which is indeed in the negative z direction, as expected. In this case, the curl is actually a constant, irrespective of position. The "amount" of rotation in the above vector field is the same at any point (x,y). Plotting the curl of F isn't very interesting:

A more involved example

Suppose we now consider a slightly more complicated vector field:
F(x,y)=-x^2\boldsymbol.
Its plot:
We might not see any rotation initially, but if we closely look at the right, we see a larger field at, say, x=4 than at x=3. Intuitively, if we placed a small paddle wheel there, the larger "current" on its right side would cause the paddlewheel to rotate clockwise, which corresponds to a curl in the negative z direction. By contrast, if we look at a point on the left and placed a small paddle wheel there, the larger "current" on its left side would cause the paddlewheel to rotate counterclockwise, which corresponds to a curl in the positive z direction. Let's check out our guess by doing the math:
\vec \times \vec =0\boldsymbol+0\boldsymbol+ (-x^2) \boldsymbol=-2x\boldsymbol
Indeed the curl is in the positive z direction for negative x and in the negative z direction for positive x, as expected. Since this curl is not the same at every point, its plot is a bit more interesting:
We note that the plot of this curl has no dependence on y or z (as it shouldn't) and is in the negative z direction for positive x and in the positive z direction for negative x.

Three common examples

Consider the example ∇ × [ v × F ]. Using Cartesian coordinates, it can be shown that
\mathbf \left( \mathbf \right) = \left[ \left( \mathbf \right) + \mathbf \right] \mathbf- \left[ \left( \mathbf \right) + \mathbf \right] \mathbf \ .
In the case where the vector field v and ∇ are interchanged:
\mathbf \left( \mathbf \right) =\nabla_F \left( \mathbf \right) - \left( \mathbf \right) \mathbf \ ,
which introduces the Feynman subscript notation ∇F, which means the subscripted gradient operates on only the factor F.
Another example is ∇ × [ ∇ × F ]. Using Cartesian coordinates, it can be shown that:
\nabla \times \left( \mathbf \right) = \mathbf (\mathbf) - \nabla^2 \mathbf \ ,
which, with some head-scratching, can be construed as a special case of the first example with the substitution v → ∇.

Descriptive examples

  • In a tornado the winds are rotating about the eye, and a vector field showing wind velocities would have a non-zero curl at the eye, and possibly elsewhere (see vorticity).
  • In a vector field that describes the linear velocities of each individual part of a rotating disk, the curl will have a constant value on all parts of the disk.
  • If velocities of cars on a freeway were described with a vector field, and the lanes had different speed limits, the curl on the borders between lanes would be non-zero.
  • Faraday's law of induction, one of Maxwell's equations, can be expressed very simply using curl. It states that the curl of an electric field is equal to the opposite of the time rate of change of the magnetic field.

References

  1. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review
curl in Bosnian: Rotor (matematika)
curl in Catalan: Rotacional
curl in Czech: Rotace (operátor)
curl in German: Rotation (Mathematik)
curl in Spanish: Rotacional
curl in Esperanto: Kirlo (matematiko)
curl in Persian: تاو
curl in French: Rotationnel
curl in Icelandic: Rót (virki)
curl in Italian: Rotore (matematica)
curl in Hebrew: רוטור
curl in Dutch: Rotatie (vectorveld)
curl in Japanese: 回転 (数学)
curl in Polish: Rotacja
curl in Portuguese: Rotacional
curl in Romanian: Rotor
curl in Russian: Ротор (математика)
curl in Slovak: Rotácia (operátor)
curl in Finnish: Roottori
curl in Swedish: Rotation (vektoranalys)
curl in Turkish: Rotasyonel
curl in Ukrainian: Ротор (математика)
curl in Chinese: 旋度

Synonyms, Antonyms and Related Words

Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1